Monday, October 7, 2019
Holistic care of patient with chronic obstrucive pulmonary disease Essay
Holistic care of patient with chronic obstrucive pulmonary disease - Essay Example noea associated with progressive obstruction of expiratory airflow secondary to chronic airways and lung parenchyma inflammation (Woodley and Whelan, 1992; Sutherland and Cherniack, 2004; Fibbri, et al., 2008). COPD, the term used to refer chronic bronchitis and emphysema, is one of the most common disorders in an adult lung (American Lung Association, 2009; National Lung Heart and Heart Blood Institute, 2009). Both chronic bronchitis and emphysema alike coexists; therefore, referred to by the physicians as COPD (American Lung Association, 2009). On the other hand, Barnes (2000) stated that COPD encompasses chronic obstructive bronchitis accompanied with small airway obstruction as well as emphysema with air space enlargement, destruction of parenchyma of the lung, loss of elasticity of the lung, and small airway closure. Chronic obstructive pulmonary disease, the leading cause of death in the western society, requires prevention and treatment improvement (Simpson and Rocker, 2008). Its because of the fact that traditional approaches of healthcare to COPD is focused only on the pathophysiology underlying the disease that aimed to treat and prevent acute exacerbations not knowing the psychological impact that instantaneously follows the physical decline are the powerful forces in shaping patientsââ¬â¢ experience with COPD (Simpson and Rocker, 2008). In patients with advancing COPD, the dominant role and psychosocial impact on the quality of life requires one to think twice on efficient approach to effectively address the issue of care (Simpson and Rocker, 2008). In COPD, a holistic approach must be practised, and to achieve this, an individual nursing care plan of treatment must be carried out. These include lifestyle modification such as cessation of smoking, pulmonary status optimisation by means of pharmacotherapy and exercise as well as nutritional and metabolic intervention strategies (van der Valk, 2004). Around 600 million individuals are diagnosed with COPD
Sunday, October 6, 2019
Are science and religion in conflict Research Paper
Are science and religion in conflict - Research Paper Example According to science, everything which happens in the universe has a natural cause and it does not relate it to a God or an unseen force. On the contrary, the religion only believes in God and establishes its foundation on concept of God and in his unlimited powers. Science completely relies on proof and religion is depended on morality, faith and spirituality and hence both remains in conflict forever. All religion in the world is based on God and his attributes and science on other hand is a study of nature. The basis and principles of religion is passed on to people from their ancestors and elders and has strong grounds of belief and faith. But science is developed by studying and researching on elements of nature. Science only believes on fact and evidence based information and cannot rely on imagination and faith. The core reason for the conflict between science and religion is on matter of creation of universe and the former regards creation of universe as accidental whereas re ligion strongly believes that creation of universe is a planned action of God. Science does not believe in miracle or supernatural powers whereas the religious concepts have many illusionary and superficial thinking attached to it. Part Two: Argument Incompatible Nature of Science and Religion Science and religion has their ideas rooted in different subjects and as a result they conflict with each other on varied platforms. On every sphere of human activity like astronomy, history, medicine, human sexuality and religious practices and events, science and religion maintains different opinions. According to religion, the astronomy is related to the position of planets and the way they influence the everyday life of human beings. Ancient people used to make astronomical observation and understand the position of planets and assess their positive and negative effect on human beings. They integrated rituals and religious ceremonies keeping in mind the influence of planets on human life. As per science, astronomy is the study of various planets and their origin, nature and evolution. Even on history, science and religion contradict each other regarding various events taken place in the past like the creation of earth and flood story about Noahââ¬â¢s ark. The science neglects these stories as they believe in evidence found by fossil excavation and anthropology. Science believes in Darwinââ¬â¢s evolution theory and suggests that man evolved from apes. According to old and New Testament, earth is millions of years old whereas science suggests that earth are not that old as testament indicate. In relation to language, religion believes that it originated among people of Babel in Middle East. However, science point out that language evolved among people who travelled in groups and sub groups during migration. When it comes to medicine, there is also difference of opinion among science and religion .Science believes that medicine is the only means to heal diseases w here as religion is of the opinion that faith and prayers to the God helps people to keep away from illnesses. Religion believes in the connection of body with the soul and how God exists in the soul of all human beings. Since faith in religion is something related to mind and grounded in the belief of God, science does not give importance to it. According to (Cray, 2006) ââ¬Å"God cannot be completely contained within nature, and therefore God's existence is outside of science's ability to really weigh inâ⬠. Science mainly relates itself with nature and its activities, whereas religion sees and believes in things beyond nature. In religion there
Saturday, October 5, 2019
Language processing capacities and learning abilities Dissertation
Language processing capacities and learning abilities - Dissertation Example Lust and Foley (2004) indicate that the rapid progress in the field of L1 acquisition, combined with the challenge of increasingly interdisciplinary literature, has turned into an overwhelming challenge to all scholars in the field. Their volume contains research into the philosophy and science of language acquisition. Articles include discoveries about the way children acquire abstract systems combining discrete symbolic elements in a language. Lust and Foleyââ¬â¢s selected readings have an emphasis on linguistic theory, and they assert that theoretical positions in the field have often become polarized. Theoretical disputes are interpreted as a sign of vitality in the field.Johnson (2004) focuses on a review of traditional cognitive approaches to second language acquisition research, and offers a more sociocultural perspective. Her work reviews behaviorist, cognitivist, and information processing approaches to SLA. The author makes an overview of Vygotskyââ¬â¢s theory, includ ing discussion of inter- and intrapersonal interaction, the proximal development zone, and the role of language in mental processes development. She emphasizes the need to explore local second language ability, in terms of social environment, local genres, and institutional contexts.Bialystok et al. (2008) performed two studies to investigate lexical access in bilinguals. In the first one, monolinguals performed better than bilinguals on tests of naming and letter fluency, but not on category fluency. No differences existed with regard to vocabulary size
Friday, October 4, 2019
Outline and Introductory Paragraph Worksheet Essay Example for Free
Outline and Introductory Paragraph Worksheet Essay University of Phoenix Material Outline and Introductory Paragraph Worksheet Create an outline and introductory paragraph in preparation for writing a complete Personal Plan due in Week Five. Use the following information to assist you with the content of your outline and introductory paragraph: â⬠¢ Ethical Lens Inventory results â⬠¢ Career Interests Profiler results â⬠¢ Career Plan Building Activity: Competencies results â⬠¢ Your SMART goals, including those identified in the University of Phoenix Material: Goal Setting Use the following to assist you with the writing of your outline: â⬠¢ Sample Outline in the CWE â⬠¢ MyFoundationsLab: The Writing Process â⬠¢ MyFoundationsLab: Prewriting Outline: Introduction: 1. Topic: What the results say versus what I thought about myself. a. Subtopic: Seeing my strengths and weakness b. Subtopic: Figuring in my SMART goals 2. Topic: How to build off of my competencies a. Subtopic: What areas need to be improved b. Subtopic: What jobs I may look for in the future Use the following to assist you with the writing of your introductory paragraph: â⬠¢ MyFoundationsLab: Developing and Organizing a Paragraph â⬠¢ MyFoundationsLab: The Topic Sentence â⬠¢ MyFoundationsLab: Recognizing a Paragraph Introductory Paragraph: Since I have started college, I have set myself up for high standards. My wife and I have talked many times about the importance of me wanting to go to college so I have an understanding support system. Ever since I enrolled at University of Phoenix I have received many helpful resources. These resources first helped point me in the right direction not only for academics but also in my future with locating the right job for my personality. I could see what jobs matched my personality and compare them to the jobs I wanted to take before I joined the university and I saw that the results were close to the same. The universityââ¬â¢s resources then helped me identify my strengths and weaknesses. Whereas I plan to continue to practice my strengths that I already knew I had, I can make my weaknesses that I never thought about into strengths as well. Finally, the resources allowed me to set up SMART goals in which to help further my education by breaking down what I need to study further into detail in order to succeed in my classes. Not only has the University of Phoenix helped set up goals while I am studying, but also it has helped me identify SMART goals, which will help me to enhance myself for the professional world.
Thursday, October 3, 2019
Building Information Modeling In Site Management Construction Essay
Building Information Modeling In Site Management Construction Essay The construction industry is ever evolving with increasing performance demand. Project handover deadlines are shorter, costs are tighter, regulation more stringent, project briefs are more complex, construction procurement methods more varied, Technology forever developing, parallel to technology quality more difficult to achieve and maintain. How do we, as construction professionals, respond to these increasing demands and retain implementing quality in an environment of such increasing complexity and competing constrain? The purpose is to deconstruct the process of managing construction site to investigate how a BIM approach to design and development as well as documentation might assist us to meet the future demands of implementation and site management practice. I will try to focus on present techniques used and successfully implemented examples, especially with the help of BIM tools to assist the process of site management. This report will show an outline methodology in regard to the site management work flow in practice. Particular emphasis will be placed upon the fast track nature of site implementation that is becoming more commonplace in the construction industry. These approaches, supported by property developed and implemented standard and procedures will assist to maximize the efficiency of our practices workflow as well as clarify some myths under the increasing pressure of contemporary site management. Keywords: BIM, Construction, Site Management, Site implementation, collision. Background Industrial Context Managing site is a process that consists of the building or assembling of infrastructure. Far from being a single activity, large scale construction is a feat of human multitasking. Normally, the job is managed by a project manager, and supervised by a construction manager, design engineer, construction engineer or project architect. For the successful management and execution of a construction project, effective planning and technical supports are essential. Involved with the design and execution of the infrastructure in question must consider the environmental impact of the work, the successful scheduling, budgeting, construction site safety, availability of building materials, logistics, inconvenience to the public caused by construction delays and bidding, etc. Participants in the whole managing process are constantly challenged to deliver successful projects despite tight budgets, limited manpower, accelerated schedules, and limited or conflicting information. The BIM concept en visages virtual construction of a facility prior to its actual physical construction, in order to reduce uncertainty, improve safety, work out problems, and simulate and analyze potential impacts.à [1]à Sub-contractors from every trade can input critical information into the model before beginning construction, with opportunities to pre-fabricate or pre-assemble some systems off-site. Problem Of course, BIM is an absolutely wonderful tool, and it has great potential to streamline costs, processes and time, to help different disciplines communicate effectively and to ensure little confusion on a construction site. But to get to that promised land of benefits, you have to pass through the wilderness of adoption, which always seems to hinge on organizational change, not technology. This is the inconvenient truth. Without having a clear concept and following some myths, BIM has become another cost, instead of a cost-savings tool for site management. Learning Objectives: What is BIM? What is virtual construction and how it helps to manage site? What is BIM 3D to 6D approaches for construction site management? How BIM collaborate all contractor works in a single platform to the project from collision? Approach Masters(ConREM) Course materials of Product Modeling, literatures, recent real estate journals, Conference Lectures of world renowned practicing BIM experts and site managers of these days were my key features for investigation and analysis of this discussion topic. Course materials were well organized and highly informative to understand BIM and personally I have used 2D / 3D CAD for more than 2 years and have had the opportunity to work in a largest construction site (satellite city) in Bangladesh as a Project Engineer in my professional career. Analysis What is BIM? Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition.à [2]à For the professionals involved in a project, BIM enables a virtual information model to be handed from the design team (architects, surveyors, civil, structural and building services engineers, etc.) to the main contractor and subcontractors and then on to the owner/operator; each professional adds discipline-specific knowledge to the single shared model. This reduces information losses that traditionally occurred when a new team takes ownership of the project, and provides more extensive information to owners of complex structures. BIM can be used to demonstrate the entire building life cycle, supporting processes including cost management, construction management, project management and facility operation. Quantities and shared properties of materials can be extracted easily. Scopes of work can be isolated and defined. Systems, assemblies and sequences can be shown in a relative scale with the entire facility or group of facilities. Dynamic information about the building, such as sensor measurements and control signals from the building systems, can also be incorporated within BIM to support analysis of building operation and maintenance.à [3]à BIM also prevents errors by enabling conflict or clash detection whereby the computer model visually highlights to the team where parts of the building (e.g.: structural frame and building services pipes or ducts) may wrongly intersect. Features of BIM in site management One of the features of BIM in site management is Virtual design and construction. Virtual Design and Construction is the use of integrated multi-disciplinary performance models of design-construction projects to support explicit and public business objectives. Virtual models are virtual because they show computer-based descriptions of the project. The Virtual project model emphasizes those aspects of the project that can be designed and managed, i.e., the product (typically a building or plant), the organization that will define, design, construct and operate it, and the process that the site management teams will follow. These models are logically integrated in the sense that they all can access shared data, and if a user highlights or changes an aspect of one, the integrated models can highlight or change the dependent aspects of related models. The models are multi-disciplinary in the sense that they represent the Architect, Engineering, Contractor (AEC) and Owner of the project, as well as relevant sub disciplines. The models are performance models in the sense that they predict some aspects of project performance, track many that are relevant, and can show predicted and measured performance in relationship to stated project performance objectives. 3D Model Model walkthroughs: These provide a great visualization tool enabling designers and contractors to work together to identify and resolve problems with the help of the model before walking on-site. Clash detection: Traditionally design drawings must be coordinated to assure that different building systems do not clash and can actually be constructed in the allowed space. Accordingly, most clashes are identified when the contractor receives the design drawings and everyone is on-site and working. With clashes being detected so late, delay is caused and decisions need to be made very quickly in order to provide a solution. BIM enables potential problems to be identified early in the design phase and resolved before construction begins. Illustrating the advantages of BIM, one project for the General Services Administration in America saw BIM model reviewers find 257 constructability issues and 7,213 conflicts. On the same project, traditional plan reviewers found six constructability issues and one conflict. Project visualization: Simple schedule simulation can show the owner what the building will look like as construction progresses. This provides a very useful and successful marketing tool for all those involved in a project. Contractors can also use project visualization to understand how the building will come together. Virtual mock-up models: Often on large projects the owner will request physical mock-up models so they can visualize, better understand and make decisions about the aesthetics and the functionality of part of the project. BIM modeling enables virtual mock-ups to be made and tested for a fraction of the cost. Prefabrication: The level of construction information in a BIM model means that prefabrication can be utilized with greater assurance that prefabricated components will fit once on-site. As a result, more construction work can be performed offsite, cost efficiently, in controlled factory conditions and then efficiently installed. 4D Time Construction planning and management: BIM models provide a means of verifying site logistics and yard operations by including tools to visually depict the space utilization of the job site throughout a projects construction. The model can include temporary components such as cranes, Lorries and fencing. Traffic access routes for lorries, cranes, lifts, and other large items can also be incorporated into the model as part of the logistics plan. Tools can further be used to enhance the planning and monitoring of health and safety precautions needed on-site as the project progresses. Schedule visualization: By watching the schedule visualization, project members will be able to make sound decisions based upon multiple sources of accurate real-time information. Within the BIM model a chart can be used to show the critical path and visually show the dependency of some sequences on others. As the design is changed, advanced BIM models will be able to automatically identify those changes that will affect the critical path and indicate what there corresponding impact will be on the overall delivery of the project. 5D Cost Quantity Takeoffs: To determine a projects construction cost and requirements, contractors traditionally perform material take-offs manually, a process fraught with the potential for error. With BIM, the model includes information that allows a contractor to accurately and rapidly generate an array of essential estimating information, such as materials quantities and costs, size and area estimates, and productivity projections. As changes are made, estimating information automatically adjusts, allowing greater contractor productivity. Real Time cost estimating: In a BIM model cost data can be added to each object enabling the model to automatically calculate a rough estimate of material costs. This provides a valuable tool for designers, enabling them to conduct value engineering. However, it should be noted that overall project pricing would still require the expertise of a cost estimator. 6D Facilities Management Lifecycle management: Where a model is created by the designer and updated throughout the construction phase, it will have the capacity to become an as built model, which also can be turned over to the owner. The model will be able to contain all of the specifications, operation and maintenance (OM) manuals and warranty information, useful for future maintenance. This eliminates the problems that can currently be experienced if the OM manual has been misplaced or is kept at a remote location. Data Capture: Sensors can feed back and record data relevant to the operation phase of a building, enabling BIM to be used to model and evaluate energy efficiency, monitor a buildings life cycle costs and optimize its cost efficiency. It also enables the owner to evaluate the cost-effectiveness of any proposed upgrades. Project communication and Collaboration Communication is essential to integrated site management processes. Without tools that simplify communication and allow the decision maker to make timely decisions, it is difficult to minimize errors and keep everyone in the loop. A collaborative approach by BIM to project communications is the best way to minimize problems. In an integrated process, it is the only way. Different BIM models ideally, a construction project would utilize a single BIM model used by designers, contractors, subcontractors and fabricators for all purposes. Each party could access the model at will, adding content that all others could immediately utilize. The reality is that for many years there will rarely be a single BIM model. The architect may have its design model, each engineer may have an analysis model for its discipline, and the contractor may have a construction simulation model and the fabricator its shop drawing or fabrication model. Interoperability the sharing of information between these di fferent models is critical to the collaborative use of BIM, by assuring that each model consistently represents the same building. However, current technologies, and levels of BIM adoption, do not yet allow seamless coordination between different BIM models. The use of multiple models undermines the collaborative use of BIM and prevents project parties from reaping the full benefits of BIMs capabilities. Identify Collisions before They Cause Issues in the Field: Heres an example of how BIM can dramatically reduce construction cost overruns. KAI was providing BIM services for a large hospital project already under construction. When the managers integrated the MEP, HVAC and fire protection drawings into BIM model, they detected a potential collision between the electrical cable raceways and the HVAC. Then they met with the owner, the designer and the affected contractors to review the 3-D BIM model and work out the best solution for co-locating the raceways and the HVAC. The three-hour meeting saved thousands of dollars in change orders and weeks of potential construction delays. In addition to collision detection, BIM enables the cost-saving power of reusability. For example, for health-care portfolio, they developed standard hospital room types in our BIM system that they continuously adapt for standard components, such as wall and bathroom designs. That allows them to build quickly and keep costs competitive. BIM also makes more off-site fabrication possible. BIMs benefits for general contractors include higher quality work completed on a faster schedule, better design visualization, ability to clarify and control scope of work, more detailed scheduling and phasing, more accurate estimates and quantity takeoffs, improved spatial coordination and, of course, better collision detection. Results and Business Impacts Key Findings BIM building information modelling is a co-ordinated set of processes, supported by technology, that add value by creating, managing and sharing the properties of an asset throughout its lifecycle. BIM incorporates data physical, commercial, environmental, and operational on every element of a developments design. Better outcomes through collaboration All project partners different design disciplines, the customer, contractor, specialists and suppliers use a single, shared 3D model, cultivating collaborative working relationships. This ensures everyone is focused on achieving best value, from project inception to eventual decommissioning. Enhanced performance BIM makes possible swift and accurate comparison of different design options, enabling development of more efficient, cost-effective and sustainable solutions. Optimised solutions Through deployment of new generative modelling technologies, solutions can be cost-effectively optimised against agreed parameters. Greater predictability Projects can be visualised at an early stage, giving owners and operators a clear idea of design intent and allowing them to modify the design to achieve the outcomes they want. In advance of construction, BIM also enables the project team to build the project in a virtual environment, rehearsing complex procedures, optimising temporary works designs and planning procurement of materials, equipment and manpower. Faster project delivery Time savings, up to 50%, can be achieved by agreeing the design concept early in project development to eliminate late stage design changes; using standard design elements when practicable; resolving complex construction details before the project goes on site; avoiding clashes; taking advantage of intelligence and automation within the model to check design integrity and estimate quantities; producing fabrication and construction drawings from the model; and using data to control construction equipment. Reduced safety risk Crowd behaviour and fire modelling capability enable designs to be optimised for public safety. Asset managers can use the 3D model to enhance operational safety. Contractors can minimise construction risks by reviewing complex details or procedures before going on site. Fits first time Integrating multidisciplinary design inputs using a single 3D model allows interface issues to be identified and resolved in advance of construction, eliminating the cost and time impacts of redesign. The model also enables new and existing assets to be integrated seamlessly. Reduced waste Exact quantity take-offs mean that materials are not over-ordered. Precise programme scheduling enables just-in-time delivery of materials and equipment, reducing potential for damage. Use of BIM for automated fabrication of equipment and components enables more efficient materials handling and waste recovery. Whole life asset management BIM models contain product information that assists with commissioning, operation and maintenance activities for example sequences for start-up and shut-down, interactive 3D diagrams showing how to take apart and reassemble equipment items and specifications allowing replacement parts to be ordered. Continual improvement Members of the project team can feed back information about the performance of processes and items of equipment, driving improvements on subsequent projects Business Impact BIM is the future of construction and long term facility management but there is still much confusion about what exactly it is and how it should be utilized and implemented. BIM is a relatively new technology in an industry typically slow to adopt change. Yet many early adopters are confident that BIM will grow to play an even more crucial role in building documentation. BIM provides the potential for a virtual information model to be handed from Design Team (architects, surveyors, consulting engineers, and others) to Contractor and Subcontractors and then to the Owner, each adding their own additional discipline-specific knowledge and tracking of changes to the single model. The result greatly reduces information losses in transfer. It also prevents errors made at the different stages of development/construction by allowing the use of conflict detection where the model actually informs the team about parts of the building in conflict or clashing. It also offers detailed computer visualization of each part in relation to the total building. Conclusion BIM is much more than an electronic drawing tool. In a nutshell, BIM is the creation of a complete digital representation of all stages of the building process in order to facilitate the exchange of project information in a digital format. Driven by an information-rich database, it enables members of the project team to simulate the structure and all of its systems in three dimensions and to share this information. The drawings, specifications and construction details are integral to the model. As a result, the team members are able to identify design issues and construction conflicts well before the first earth mover arrives at the site. A project can realize its greatest potential and highest value when it is collaboratively designed and built that is, when the entire design team works together starting in the early planning and design phase. When effectively used by all key members of a project team the architecture/engineering firm (A/E), general contractor or construction manage r, and specialty contractors, in particular, the mechanical, electrical, plumbing and fire protection contractors BIM is a platform for true collaboration. In fact, input from the mechanical, electrical, plumbing and fire protection contractors in the design phase is critically important to prevent collisions or conflicts in the field. Practical Tips and Key Lessons: Virtual modeling by BIM 3D to 6D approach Cost saving More organized site management Prediction of site problems Collaboration of site works Well scheduled management of site Acknowledgements I would like to thanks my BIM course tutor Janne Salin (part time lecturer, ConREM) and Pà ¤ivi Jà ¤và ¤jà ¤ (teacher, ConREM) for providing me helpful information in the field of Building Information Modeling.
Wednesday, October 2, 2019
Great People :: miscellaneous
Great People Only great men are marked with great faults.â⬠This quotation from ââ¬Å"Maximsâ⬠was written by La Rochefoucauld. He states that people with nobility of their minds create many mistakes throughout their lives. This quotation is only partially correct, people do indeed have faults but it is these faults that restrict them from being great. Every person has done unpleasant acts that disassociate them from being a great person. Each day, people break society's norms or rules and most feel they have done nothing wrong. A man who has sex with the under aged girl has a justification for his actions. He tells himself that she knew what she was getting into even though he did actually rape her. Just as a man with his wifeââ¬â¢s blood on his hands justifies that she deserved her punishment for not following his rules. Everyone breaks some form of laws through out the day. People who do not see themselves as criminals break laws, for instance the average speeder or traffic light runner. These people are in a hurry and do not want the hassle of stopping or slowing down instead they go on and have an accident. Each person has their own way of justifying their actions. Most people blame someone else for their own actions because to them they did nothing wrong. While others compare their actions to the actions of others who did a deed far worse than theirs. With this constant justification of our negative traits peoples' views of reality begin to become distorted and lost. With distortion of reality the whole society begins to shift into a greatless nation of sinners. Some people who are thought of being great discover inventions that injure or take othersââ¬â¢ lives. For example Albert Einstein, he was the discoverer of atomic energy. This energy has been used to devastate entire cities and kill uncountable numbers of people. Atomic energy emits a massive amount of radiation that pollutes our air, water, and land leaving large areas inaccessible for years to come. Is this the work of a great individual? No, a great person would not create something that would be this destructive. Albert Einstein obviously did not know the full extent of his discovery. He did not take the time to completely research all the possibilities and consequences that came with his findings. So in other words the human race is still paying for his mistakes.
Isolation Theme in Grendel :: essays research papers
Isolation Have you ever felt as though youââ¬â¢re alone in the world, even though you are not? In the book Grendel, the main character is the last of his species, excluding his mother who might as well be non-existent in the novel. Grendel is a monster who speaks a language very similar to that of the humans he watches almost constantly. He feels a certain attachment to them throughout the whole novel, but he is unable to become close to any of them due to his horrifying form. The humans are terrified of Grendel, and attack him whenever he comes near. He feels completely isolated, as do many people in our world. The story begins with a flash-back into Grendelââ¬â¢s early years. He is all alone even then, but he is too young to realize it and fills this void with imaginary friends. He talks about how he entertained himself during his early years saying ââ¬Å"Crafty-eyed, wicked as an elderly wolf, I would scheme with or stalk my imaginary friends, projecting the self I meant to become into every dark corner of the cave and the woods aboveâ⬠(17). People in our world may invent imaginary friends also, sometimes for companionship, as part of play, or for other reasons. Imaginary friends can serve as an important source of companionship to some children and even adults, especially if companionship is absent for them in the social world. As an example ââ¬Å"young children in boarding schools often develop imaginary friends to cope with extreme stress and separation from their intimate relationsâ⬠(www.phycologytoday.com/z10/fl/mllr.7se.php) Finding a mate is hard for Grendel, especially because heââ¬â¢s the last of his species. However, he still has the same emotions as humans when it comes to love. He first encounters these unfamiliar emotions when Hrothgar is given a wife named Wealtheow. Grendel thinks she is beautiful, and starts to rethink his war on the humans when he contemplates killing Wealtheow, saying to himself ââ¬Å"It would be meaningless, killing her. As meaningless as letting her live. It would be, for me, mere pointless pleasure, an illusion of order for this one frail, foolish, flicker-flash in the long dull fall of eternity.â⬠(108). Even though he is a monster, he still feels the same emotion of love that humans do. Grendel and the humans share a common language, but the humansââ¬â¢ disgust for, and fear of Grendel precludes any actual meaningful exchange.
Subscribe to:
Posts (Atom)